99 research outputs found

    Magnetoelectricity and Magnetostriction due to the Rare Earth Moment in TmAl3_3(BO3_3)4_4

    Full text link
    The magnetic properties, the magnetostriction, and the magnetoelectric effect in the d-electron free rare-earth aluminum borate TmAl3_3(BO3_3)4_4 are investigated between room temperature and 2 K. The magnetic susceptibility reveals a strong anisotropy with the hexagonal c-axis as the hard magnetic axis. Magnetostriction measurements show a large effect of an in-plane field reducing both, the a- and c-axis lattice parameters. The magnetoelectric polarization change in a- and c-directions reaches up to 300 μ\muC/m2^2 at 70 kOe with the field applied along the a-axis. The magnetoelectric polarization is proportional to the lattice contraction in magnetic field. The results of this investigation prove the existence of a significant coupling between the rare earth magnetic moment and the lattice in RRAl3_3(BO3_3)4_4 compounds (RR = rare earth). They further show that the rare earth moment itself will generate a large magnetoelectric effect which makes it easier to study and to understand the origin of the magnetoelectric interaction in this class of materials.Comment: 4 pages, 5 figure

    Evidence for differentiation in the iron-helicoidal-chain in GdFe3_{3}(BO3_{3})4_{4}

    Get PDF
    We report on a single-crystal X-ray structure study of GdFe3(BO3)4GdFe_{3}(BO_{3})_{4} at room temperature and at T=90 K. At room temperature GdFe3(BO3)4GdFe_{3}(BO_{3})_{4} crystallizes in a trigonal space group R32 (No. 155), the same as found for other members of iron-borate family RFe3(BO3)4RFe_{3}(BO_{3})_{4}. At 90 K the structure of GdFe3(BO3)4GdFe_{3}(BO_{3})_{4} has transformed to the space group P3121P3_{1}2_{1} (No. 152). The low-temperature structure determination gives new insight into the weakly first-order structural phase transition at 156 K and into the related Raman phonon anomalies. The discovery of two inequivalent iron chains in the low temperature structure provide new point of view on the low-temperature magnetic properties.Comment: Subm. to Acta Cryst.

    Magnetization and specific heat of TbFe3(BO3)4: Experiment and crystal field calculations

    Full text link
    We have studied the thermodynamic properties of single-crystalline TbFe3(BO3)4. Magnetization measurements have been carried out as a function of magnetic field (up to 50 T) and temperature up to 350K with the magnetic field both parallel and perpendicular to the trigonal c-axis of the crystal. The specific heat has been measured in the temperature range 2-300K with a magnetic field up to 9 T applied parallel to the c-axis. The data indicate a structural phase transition at 192 K and antiferromagnetic spin ordering at 40 K. A Schottky anomaly is present in the specific heat data around 20 K, arising due to two low-lying energy levels of the Tb3+ ions being split by f-d coupling. Below TN magnetic fields parallel to the c-axis drive a spin-flop phase transition, which is associated with a large magnetization jump. The highly anisotropic character of the magnetic susceptibility is ascribed mainly to the Ising-like behavior of the Tb3+ ions in the trigonal crystal field. We describe our results in the framework of an unified approach which is based on mean-field approximation and crystal-field calculations.Comment: 10 pages, 10 figures, 20 references, accepted by Phys. Rev.

    Bifurcations observed in the spectra of coupled electron-phonon modes in multiferroic PrFe3(BO3)4PrFe_3(BO_3)_4 subjected to a magnetic field

    Get PDF
    We report on bifurcations effect mediated by the electron-phonon coupling in a concentrated rare-earth-containing antiferromagnet, observed in the spectra of coupled 4f4f-electron-phonon modes under the influence of an external magnetic field. The effect was observed in the low-temperature far-infrared (terahertz) reflection spectra of a multiferroic easy-axis antiferromagnet PrFe3(BO3)4PrFe_3(BO_3)_4 in magnetic fields Bext∣∣c\textbf{B}_{ext}||c. Both paramagnetic and magnetically ordered phases (including a spin-flop one) were studied in magnetic fields up to 30 T. We show that the field behavior of the coupled modes can be successfully explained and modeled on the base of the equation derived in the frame of the theory of coupled electron-phonon modes, with the same field-independent electron-phonon interaction constant ∣W∣=14.8cm−1|W| = 14.8 cm^{-1}.Comment: 5 pages, 4 figure
    • …
    corecore